
 
 
 

Improving the Numerical Efficiency of Generalized Multipole 
Technique by Non-redundant Multipole Choices 

 
A.K. Bandyopadhyay , C. Tomassonià, M. Mongiardoà and A.S. Omar  

 
  Chair of Microwave and Communication Engineering, FET-IESK, Otto-von-Guericke University, 

Magdeburg, PF 4120, 39016 Magdeburg, Germany 
 

à DIEI, University of Perugia, Via G. Duranti, 93, 06125, Perugia, Italy. 
 

Email: ayan@ipe.et.uni-magdeburg.de, tomassoni@diei.unipg.it, mongiardo@diei.unipg.it, 
a.omar@ieee.org 

 
 
 
 

Abstract: The Generalized Multipole Technique, due to its flexibility, is used in a variety of cases for 
the analysis of electromagnetic structures. This method is generally based on a multiple multipole 
expansion and a point matching technique. The numerical conditioning of the matrices involved in this 
analysis is strongly dependent on the matching point and the multipole distribution.  In this 
contribution, we use the well-known Singular Value Decomposition to investigate systematically the 
numerical conditioning of these matrices. We suggest a method to improve the conditioning of the 
procedure in case of an ill-conditioned system and we validate it by evaluating the error in field 
matching and the far field radiation pattern in case of a radiating elliptical aperture.  
 
Keywords: Generalized multipole technique, Near field analysis, Far field analysis, Numerical 
analysis, Scattering at apertures.  
 

1. Introduction  
 
In the conventional approach for evaluating radiation field at apertures, often it is assumed that the 

aperture is mounted on an infinite metallic flange plane[1].Unfortunately, with this approach, the 
radiation pattern is obtained in a limited accuracy zone in the far field region and the back-scattered 
field remains completely unknown. Moreover, the real three-dimensional geometry of the conducting 
structure containing the radiating aperture cannot be taken into account in the radiated field evaluation.  

The use of Generalized Multipole Technique (GMT) together with the Point Matching Technique 
allows us, by imposing proper boundary condition, to accurately model the radiating aperture together 
with the real three-dimensional metallic structure on which the aperture is mounted. In this method the 
external field is represented in terms of the elementary fields radiated by finite sets of multipoles, 
which are distributed within the radiating object. Here, the aperture field is considered to be known. 
As an example, it can be obtained by applying the Generalized-Multipole-Technique – Mode-
matching-Technique as in [2]-[3] where the aperture field is expressed in terms of the aperture eigen-
modes. 
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A key-point in this method is the distribution of the multipoles inside the structure under 
examination, e.g. a radiating object, and the distribution of the matching points on its conducting 
surface. The conditioning of this problem is directly related with the distribution of the multipoles and 
the matching points. The field generated by a distant multipole at neighboring matching points or the 
field produced by two very closely located multipole at a certain matching point are almost identical. 
This leads to linear dependency in the system of equation resulting severe ill conditioning. Though 
there are some guidelines to avoid the ill conditioning in the literature[4], but no systematic method to 
improve the numerical conditioning is suggested in case of a ill conditioned system.  

A reliable and robust means to detect the linear dependency and conditioning of a matrix is the 
Singular Value Decomposition (SVD). We use SVD to estimate the liner dependency and conditioning 
of the matrices. We calculate a quantity, which is equivalent to the angle between two vectors in the 
Hilbert space and use this angle value to choose the multipoles that are needed in the analysis and 
eliminate the unwanted ones. This procedure considerably improves the numerical conditioning of the 
matrices involved hence improving the numerical efficiency of this method. 
 
 

2. Theory  
A. GMT method: 

With reference to Fig.1, the electromagnetic field at an external point ‘r = (x,y,z)’ can be expressed 
by the multiple multipole expansion as: 
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Where, ( )mult
lE  and ( )mult

lH  are the multipole fields radiated by an l-th order multipole, kr denotes the 
location of corresponding multipole and klQ  denotes the unknown weight factors for the individual 
multipole contribution. In order to find out the unknown weight factor Q’s, the boundary conditions 
are imposed at the ‘m’ matching points on the aperture surface (Sa) and metallic surface (Sc) of the 
antenna. If we consider total ‘n’ number of multipoles, the tangential electric and magnetic and field 
matching on Sc and Sa leads us to the following set of equations, 
 

[ ] [ ] VQv ⋅=⋅= DC       (3) 
 

Where, v is the vector containing the tangential electric fields on the matching points (Sa and Sc), each 
column of the m×n matrix [C] contains the tangential electric field components of a certain multipole 

Multipole locations  

)

Su

Fig.1. Schematic diagram showing the aperture antenna and the m

20th Annual Review of Progress in Applied Computational Electromagnetics

April 19-23, 2004 - Syracuse, NY     © 2004 ACES
Aperture (Sa
Metallic surface (SC) 

perimposed aperture field  

ultipole locations 



at the matching points, the i-th column of [ ]D  matrix contains the electric field components of the i-th 
aperture waveguide mode on field matching points (this is zero for field matching points in Sc) and the 
vector V contains the aperture modal voltages. From (3) one can obtain the unknown Q’s as 

[ ] [ ]( ) [ ] [ ] VQ ⋅⋅⋅⋅=
−

DCCC HH 1
       (4) 

Eq. (4) allows us to evaluate Q vector in terms of the known modal expansion coefficients V. Inserting 
Q’s coefficients into (1) we obtain the electric field on the surface Sa, Sc and on the external space. If 
the problem is well conditioned the field on the surfaces should agree with the imposed boundary 
conditions (apart from a small error) and then the electric external field and the relevant magnetic field 
(1)-(2) represent our solution. From (4) we notice that in order to determine the unknown expansion 

coefficients (Q) we need to invert the product of the matrices [ ] [ ]CHC ⋅ . As the C-matrix contains the 
multipole fields at the matching points, this matrix is our main point of interest. Here it may be noted 
that we deal with an over-determined system of equations, having the C-matrix as a rectangular matrix 
with complex elements. A detailed description of the whole method can be found in [2]-[3]. 
 
B. Singular value decomposition: 

We can decompose the m×n complex matrix ‘C’ as  

HVUC ⋅Σ⋅=        (5) 

Where U  and V  are unitary matrices and Σ  = diag (σ1,σ2, σ3 …….. σr), r = min(m,n) with σ1, σ2, σ3 …….. 

σr ≥ 0 and HV  denotes the Hermitian conjugate of V. This decomposition is called the singular value 
decomposition (SVD) of the matrix ‘C’, and σ1,σ2, … are called singular values of ‘C’ [6]. The 
condition number of this matrix can be defined as,  

min

max
2

1
2)(

σ
σ=⋅= −CCCCond     (6) 

Where 2C  denotes the 2nd norm of the matrix ‘C’. Large condition number of a matrix depicts 
poor conditioning with respect to inversion. From (6) it is clear that if some of the singular values of a 
matrix are zero or approach zero then the condition number of the matrix approaches infinite and the 
matrix is ill conditioned for inversion and is denoted as column rank deficit. The number of singular 
values that are very close to zero (or below a certain numeric value which can be taken as precision) 
are counted to have the number of linearly dependent columns in the matrix.  
 
C. Inner product and angle between vectors: 

The angle between two n-dimensional vectors (u and v) in real inner product space is defined as 

22

1 .
cos

vu
vu
⋅

= −θ          (7) 

Where vu. denotes the inner product between the vectors u and v. When two vectors have zero or 
very little angle between them then they are parallel or very nearly parallel, respectively, which means 
they are linearly dependent or nearly linearly dependent. We use the same approach to detect the linear 
dependency in the GMT method. As we have all the elements of the ‘C’ matrix as complex elements, 
we calculate the angle according to the following formula for each columns of the ‘C’ matrix. 
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Where iC  denotes the i-th column of the ‘C’- matrix. Both the subscripts ‘i’ and ‘j’ run from 1 to ‘n’. 
Here, we need to calculate only the elements in the upper or lower triangle, as jiij AA = . Two 
columns having smaller ‘A’-value contain less information with respect to each other than two 
columns having a larger ‘A’ value. We sort out the columns having lowest ‘A’ values between them 
and delete one of them. Deleting a certain column is equivalent to delete one multipole as each of the 
columns represents the field components due to a particular multipole.   

 
3. Simulated results  

 
We consider the case of an elliptical horn antenna with an elliptical aperture as the radiating 

aperture. To simplify the calculations, we consider em symmetry (i.e. electric wall at xz plane and 
magnetic wall at yz plane) and assume that only a fundamental mode TEe11 is excited at the aperture. 
We have simulated a horn with an elliptical aperture of semi major axis = 45.15 mm, semi minor axis 
= 33.85 mm and with a circular flange of radius = 70 mm [5]. The diagram of the horn with the 
aperture is shown in Fig. 2. The multipole locations inside the antenna and the matching points on the 
metallic surface and aperture can be seen in Fig 3.  

 
 

                                      

In the simulation, the following parameters have been used for point matching and multipole 
distribution: 

Aperture matching points = 625 
Matching points on the metallic surface =1557 
Number of multipole locations =201 
Total number of multipoles in all locations = 1206. 

In order to know weather the ‘C’ matrix is well conditioned or not, we decompose it to obtain the 
singular values. In Fig. 4 the singular values are plotted against their number. We may note that the 
number of singular values is equal to the number of the columns (n) of the ‘C’ matrix. From the plot, it 
can be noticed that a large number of singular values lie between one and zero depicting the linear 

Fig. 2. Diagram of the simulated horn and the 
relevant co ordinate system. 
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Fig. 3. The matching point distribution and 
multipole locations.    
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dependencies in the system of equation and severe ill conditioning of the ‘C’ matrix. The condition 
number of ‘C’ matrix in this case is 4.12×1009 with the highest singular value being 274.66 and the 
lowest one being 6.65×10-8.  
 

 
 
 
 
 

Now the proposed method to improve the conditioning is applied on the ‘C’ matrix. After 
obtaining the ‘A’ matrix, 169 columns have been identified having the lowest angle values. The 
singular value spectrum of the ‘C’ matrix after eliminating these columns is shown in fig 5. For the 
new ‘C’ matrix the highest and lowest singular values are 227.55 and 0.0047 respectively, the 
condition number being 4.8×104. 
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 In Fig.6 and Fig.7 the far field plots for the aperture are shown before and after column reduction 
of ‘C’ matrix respectively. It can be easily seen that co and cross-polarized fields obtained before the 
column reduction is wrong. The corresponding angles (θ,ϕ) have been shown in Fig.2. 

In Fig.8 the error in field matching at the antenna surface and aperture after the column reduction 
is shown. Here we have plotted the difference between the ideal field (representing the boundary 
condition in our problem) and the obtained field at the antenna surface and the aperture at some 
arbitrary points other than the matching points. It is clear from the figure that overall quality of the 

Fig 6: Co-polarized (cp) and cross-polarized (xp) field
obtained for the elliptical aperture with ϕ = 45° and
excited with TEe

11 mode, before the improvement of the
conditioning. 

Fig 7: As in figure 6 but after the improvement of the
conditioning. 

Fig 4: Singular value spectrum of ‘C’ matrix 
before column reduction.  

Number of singular values 

Fig 5: Singular value spectrum of ‘C’ matrix 
after column reduction. 

Number of singular values 
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Fig 9: Comparison between the field pattern obtained by 
GMT (after column reduction) and FDTD (MWST). 

field matching is very good. It is worthy to note that the maximum normalized error at the aperture is 
0.0096 and the maximum difference in e-field on the metallic surface is 0.105.  
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Fig 8: The error in field matching at the antenna surface and 
aperture. The color bar represents the value of the error. 
In Fig.9 the comparison between the co and cross-polarized far field pattern of the same aperture 
obtained by our method (after improving the numerical conditioning) and the Finite Difference Time 
domain (FDTD) method is shown. For FDTD simulation, we used the Microwave studio (MWST) 
software and absorbing boundary condition has been applied to obtain the back-scattered field. 

 
4. Conclusions 

 
We have analyzed the issue of numerical conditioning in the Generalized Multipole Method 

applied to characterize the radiating aperture. The singular value decomposition is used to obtain the 
number of linearly dependent columns of the matrix. It has been shown that the idea of calculating the 
angle between two vectors in the inner product space can be applied successfully to identify the linear 
dependency in the involving system of equations. As this method is simple and general, so it can be a 
useful tool in automatic multipole setting in GMT and can also be used to remove ill conditioning in 
GMT applied to the complicated scattering structures. 
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